AH- 1108 CV-19 S

B.A./B.Sc. (Part-I) Term End Examination 2019-20 Paper-III

MATHEMATICS

Time: Three Hours]

[Maximum Marks: 50

नोट:- प्रत्येक प्रश्न से किन्हीं दो भागों को हल कीजिए। सभी प्रश्नों के अंक समान हैं। Note:Solve any two parts from each question. All question carry equal marks.

इकाई 1/Unit-I

1. (a) यदि $\vec{a}, \vec{b}, \vec{c}$ तथा $\vec{a}', \vec{b}', \vec{c}'$ व्युत्कम पद्धति के सदिश हो तो सिद्ध कीजिए।

$$(\vec{a}' \times \vec{b}') + (\vec{b}' \times \vec{c}') + (\vec{c}' \times \vec{a}') = \frac{\vec{a} + \vec{b} + \vec{c}}{[\vec{a}\vec{b}\vec{c}]}$$
 ਯहाँ $[\vec{a}, \vec{b}, \vec{c}] \neq 0$

If $\vec{a}, \vec{b}, \vec{c}$ and $\vec{a}', \vec{b}', \vec{c}'$ are vector of resiprocal system then prove that.

$$(\vec{a}' \times \vec{b}') + (\vec{b}' \times \vec{c}') + (\vec{c}' \times \vec{a}') = \frac{\vec{a} + \vec{b} + \vec{c}}{[\vec{a}\vec{b}\vec{c}]}$$
Where $[\vec{a}, \vec{b}, \vec{c}] \neq 0$

(b) यदि \vec{r} किसी बिन्दु का स्थिति सदिश है तथा r उसका मापांक है, तो सिद्ध कीजिए $div(r^n\vec{r})=(n+3)r^n$

If \vec{r} is a position Vector of any point and r is modules, then prove that

$$div(r^n\vec{r}) = (n+3)r^n$$

(c) सिद्ध कीजिए $div(grad \vec{r}) = m(m+1)r^{m-2}$

Prove that $div(grad \vec{r}) = m(m+1)r^{m-2}$

डकार्ड 2 / Unit-II

2. (a) $\int_c \vec{f} \cdot \overrightarrow{dr}$ का मूल्यांकन कीजिए जहाँ $\vec{F} = x^2 \hat{\imath} - xy \hat{\jmath}$

जहाँ वक c, xy समतल में $y^2 = x$ का (0,0) से (1,1) तक चाप है—

Evaluate $\int_c \vec{f} \cdot d\vec{r}$ where $\vec{F} = x^2 \hat{i} - xy \hat{j}$ where c is a curve $y^2 = x$ in xy plane from (0,0)to (1,1)

(b) गॉस प्रमेय से सिद्ध कीजिए

$$\iint_{S} [(x^{3} - yz)i - 2x^{2}y\hat{j} + 2\hat{k}] \cdot \hat{n} \, ds = \frac{a^{5}}{3}$$

जहाँ S,समतलों x=0, x=a; y=0, y=a; z=0,z=4 से घिरा घन का एक पृष्ठ है।

Prove by Gauss theorem

$$\iint_{S} [(x^{3} - yz)i - 2x^{2}y\hat{j} + 2\hat{k}] \cdot \hat{n} \, ds = \frac{a^{5}}{3}$$

Where s is a Surface cube of a bounded by plane x=0, x=a, y=0, y=a, z=0, z=a.

(c) स्टोक्स प्रमेय का सत्यापन कीजिए

जब $\vec{F} = y\hat{x} + z\hat{j} + z\hat{k}$ तथा पृष्ठ s गोले का $x^2 + y^2 + z^2 = 1$ का XY समतल के ऊपर का भाग है।

Verify Stoke's Theorem where $\vec{F} = y\hat{x} + z\hat{j} + z\hat{k}$ and s is the Surface of Sphere $x^2 + y^2 + z^2 = 1$ above XY plane.

इकाई 3/Unit-III

- 3. (a) शांकव $17x^2 12xy + 8y^2 + 46x 28y + 17 = 0$ का अनुरेखण कीजिए। Trace the Conic $17x^2 - 12xy + 8y^2 + 46x - 28y + 17 = 0$.
 - (b) सिद्ध कीजिए कि संनाभि शांकव समकोण पर प्रतिच्छेद करती है।

Prove that the confocal conic interest at right angle.

(c) सिद्ध कीजिए $\frac{l}{r} = 1 + e \cos \theta$ शांकव का ध्रुवीय समीकरण है, जबिक नामि ध्रुव है तथा अक्ष प्रारंभिक रेखा है।

Prove that the polar equation of conic is

 $\frac{l}{r} = 1 + e\cos\theta$, Where pole is the focus and axis is initial line.

इकाई 4/Unit-IV

4. (a) यदि गोला $x^2 + y^2 + z^2 = r^2$ का कोई स्पर्श समतल निर्देशांको पर अंतः खण्ड a,b,c बनाता है।

तो सिद्ध कीजिए।
$$\frac{1}{a^2} + \frac{1}{h^2} + \frac{1}{c^2} = \frac{1}{r^2}$$

If tangent plane of any Sphere $x^2 + y^2 + z^2 = r^2$ cut the intercepts a,b,c on the axies. Then prove that

$$\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} = \frac{1}{r^2}$$

(b) उस शंकु का समीकरण ज्ञात कीजिए जिसका शीर्ष मूलबिन्दु है और निम्नलिखित वक्रों से होकर जाता है।

$$ax^2 + by^2 + cz^2 = 1$$
, $lx + my + nz = P$

Find the equation of cone, Whose vertex is origin and passing through the Curve

$$ax^2 + by^2 + cz^2 = 1$$
, $lx + my + nz = P$

(c) उस बेलन का समीकरण ज्ञात कीजिए जिसका जनक रेखा $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ के समानंतर है तथा वक $x^2 + y^2 = 16$ and Z = 0 से होकर जाते है। Find the equation of cylinder whose generating line is parallel to $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and passing through Curve $x^2 + y^2 = 16$ and Z = 0

इकाई 5/Unit-V

5. (a) शांकवन $ax^2 + by^2 + cz^2 = 1$ के बिन्दु (α, β, r) पर स्पर्श समतल का समीकरण ज्ञात कीजिए।

Find the equation of tangent plane of the conicoid $ax^2 + by^2 + cz^2 = 1$ at the point (α, β, r)

- (b) परवलयज $\frac{x^2}{2} \frac{y^2}{3} = Z$ के बिन्दु (4,3,5) पर अभिलम्ब का समीकरण ज्ञात कीजिए। Find the equation of normal at the point (4,3,5) to the paraboloid $\frac{x^2}{2} \frac{y^2}{3} = Z$
- (c) अतिपरवलयज $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ के बिन्दु $(acos\alpha, bsin\alpha, 0)$ से जाने वाले जनकों का समीकरण ज्ञात कीजिए।

Find the equation of the generating lines of the hyperboloid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ Which passes through the point $(a\cos\alpha, b\sin\alpha, 0)$.